

Chapter 8.4-5

Complex Power and Power

 FactorEngr228-Circuit Analysis
Spring 2020

Dr Curtis Nelson

Sections 8.4-5 Objectives

- Determine the complex power, average power, and reactive power for any complex load with known input voltage or current.
- Determine the power factor for a complex load and evaluate the improvement realized by compensating the load through the addition of a shunt capacitor.

Instantaneous vs. Average Power

$p(t)=\frac{V_{m} I_{m}}{2} \cos \left(\theta_{v}-\theta_{i}\right)+\frac{V_{m} I_{m}}{2} \cos \left(\theta_{v}-\theta_{i}\right) \cos (2 \omega t)-\frac{V_{m} I_{m}}{2} \sin \left(\theta_{v}-\theta_{i}\right) \sin (2 \omega t)$
The equation above can be simplified as follows:

$$
p(t)=P+P \cos (2 \omega t)-Q \sin (2 \omega t)
$$

where

$$
\begin{array}{ll}
P=\frac{V_{m} I_{m}}{2} \cos \left(\theta_{v}-\theta_{i}\right) & \text { (Average Power) } \\
Q=\frac{V_{m} I_{m}}{2} \sin \left(\theta_{v}-\theta_{i}\right) & \text { (Reactive Power) }
\end{array}
$$

Effective or RMS Value

- For example, the effective value of $\mathrm{I}=\mathrm{I}_{\mathrm{m}} \cos \omega t$ is

$$
\begin{gathered}
I_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{\mathrm{T}} \mathrm{I}_{\mathrm{m}}^{2} \cos ^{2} \omega t d t} \\
I_{\mathrm{rms}}=\sqrt{\frac{\mathrm{I}_{\mathrm{m}}^{2}}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \frac{1}{2}(1+\cos 2 \omega t) \mathrm{dt}}=\frac{I_{\mathrm{m}}}{\sqrt{2}}
\end{gathered}
$$

- Average power can then be written in two ways:

$$
P_{A V G}=\frac{V_{m} I_{m}}{2} \cos \left(\theta_{v}-\theta_{i}\right)
$$

$$
P_{A V G}=V_{r m s} I_{r m s} \cos \left(\theta_{v}-\theta_{i}\right)
$$

Effective Values of Common Waveforms

dc

$F_{\text {eff }}=F_{m}$

$F_{\text {eff }}=\frac{F_{m}}{\sqrt{2}}$
Triangular

$F_{\text {eff }}=\frac{F_{m}}{\sqrt{3}}$

Square

The Angle $\boldsymbol{\theta}_{\boldsymbol{V}}-\boldsymbol{\theta}_{\boldsymbol{i}}$

- $\theta_{V}-\theta_{i}$ is known as the Power Factor Angle.
- $\cos \left(\theta_{V}-\theta_{i}\right)$ is known as the Power Factor (PF)
- For a purely resistive load, $P F=1$;
- For a purely reactive load, $P F=0$;
- For any practical circuit, $0 \leq P F \leq 1$.
- We must distinguish between positive and negative arguments for the power factor since $\cos (x)=\cos (-x)$.

Leading and Lagging Power Factor

- pf is lagging if the current lags the voltage $\left(\theta_{V}-\theta_{I}\right.$ is positive like in an inductive load);
- pf is leading if the current leads the voltage $\left(\theta_{V}-\theta_{I}\right.$ is negative like in a capacitive load).

(a)

(b)

Power Factor - Example

- Calculate the power factor of each circuit below if the applied voltage is $\mathrm{V}=10 \cos (2500 t) \mathrm{V}$

(a)

(b)
$p f_{\text {ind }}=0.707$ lagging
$p f_{c a p}=0.371$ leading

Power Factor and the Impedance Triangle

The Power Factor is also defined as:

R

Power triangle Impedance triangle

$$
p f=\cos \theta=\frac{P}{S}=\frac{R}{|Z|}
$$

Complex Power - Triangle

Complex power contains both a real part (average power) and an imaginary part (reactive power) that together are represented in a power triangle. In equation form:

$$
S=P+j Q
$$

Complex Power - Units

TABLE 10.2 Three Power Quantities and Their Units
Quantity Units
Complex power volt-amps
Average power watts
Reactive power var

Complex Power - The Equations

$$
\begin{array}{ll}
P_{A V G}=V_{R M S} I_{R M S} \cos \left(\theta_{V}-\theta_{i}\right) & \text { watts } \\
P_{\text {REACTIVE }}=V_{R M S} I_{R M S} \sin \left(\theta_{V}-\theta_{j}\right) & \text { volt-amps-reactive } \\
P_{A P P A R E N T}=V_{R M S} I_{R M S} & \text { volt-amps }
\end{array}
$$

Apparent Power and Power Factor

Power factor can also be defined as:

$$
P F=\frac{\text { average power }}{\text { apparent power }}=\frac{P_{\text {avg }}}{V_{r m s} I_{r m s}}
$$

Example - Power Factor

Calculate the power factor of the circuit below as seen by the source. What is the average power supplied by the source?

$$
\begin{aligned}
& p f=0.936 \text { (lagging) } \\
& P_{A V G}=118 \mathrm{~W}
\end{aligned}
$$

Example Problem

Find the average power delivered to each of the two loads, the apparent power supplied by the source, and the power factor of the combined loads.

$$
\begin{aligned}
& P_{\text {avg } 2}=288 \mathrm{~W} \\
& P_{\text {avg } 1}=144 \mathrm{~W} \\
& P_{\text {app }}=S=720 \mathrm{VA} \\
& P F=0.6 \text { (} \text { (agging) }
\end{aligned}
$$

Textbook Problem 10.17-Nilsson $10^{\text {th }}$

For $i_{g}=50+\mathrm{j} 0 \mathrm{~mA}(\mathrm{rms})$, find the average and reactive power for the current source and state whether it is absorbing or delivering this power.

$P_{A V G}=-50.0 \mathrm{~mW}$ (delivering)
$P_{\text {REAC }}=25.0 \mathrm{mVAR}$ (absorbing)

Textbook Problem 10.20-Nilsson $11^{\text {th }}$

Find the average power, the reactive power, and the apparent power absorbed by the load if $v_{g}=150 \cos 250 \mathrm{t} \mathrm{V}$.

$P_{A V G}=180 \mathrm{~W}$
$P_{\text {REAC }}=90 \mathrm{VAR}$
$P_{A P P}=180+j 90 V A$

Alternative Forms for Complex Power

$$
\begin{aligned}
S & =P+j Q \\
& =V_{r m s} I_{r m s} \angle \theta_{\mathrm{V}}-\theta_{\mathrm{I}} \\
& =V_{r m s} \angle \theta_{\mathrm{V}} I_{r m s} \angle-\theta_{\mathrm{I}} \\
& =V_{r m s} I_{r m s}^{*}
\end{aligned}
$$

Complex Power - Summary

Real (Average) power:

$$
\mathrm{P}=\operatorname{Re}(\mathrm{S})=\mathrm{S} \cos \left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right) \quad \text { Watts }
$$

Reactive power:

$$
\mathrm{Q}=\operatorname{Im}(\mathbf{S})=\operatorname{Sin}\left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right) \quad \mathbf{V A R}
$$

Apparent power:

$$
\mathrm{S}=|\mathrm{S}|=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{ms}}=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}} \mathbf{V A}
$$

Complex power:

$$
S=P+j Q=V_{R M S} I_{R M S}^{*} \quad \text { VA }
$$

- $\mathrm{Q}=0$ for resistive loads (unity power factor);
- $\mathrm{Q}<0$ for capacitive loads (leading power factor);
- $\mathrm{Q}>0$ for inductive loads (lagging power factor).

Example - Apparent Power and Power Factor

- A series connected RC load draws a current of

$$
i(t)=4 \cos \left(100 \pi t+10^{\circ}\right) A
$$

when the applied voltage is

$$
v(t)=120 \cos \left(100 \pi t-20^{\circ}\right) V
$$

- Find the apparent power and the power factor of the load and determine the element values that form the load.

$$
\begin{aligned}
& S=240 V \\
& p f=0.866 \text { (leading) } \\
& C=212.2 \mu F \\
& R=26.0 \Omega
\end{aligned}
$$

Power Factor Correction

- The process of increasing the power factor without altering the voltage or current to the original load is known as power factor correction.
- Most loads are inductive. The power factor of the load can be improved (to make it closer to unity) by installing a capacitor in parallel with an inductive load.

a) Original inductive load

b) Inductive load with improved power factor

Power Factor Correction Capacitors

Power Factor Correction Capacitors

Reduce your Electricity Bill and improve your Profitability

Power Factor Correction by Power Triangle

The triangle below shows that the reactive power $\left(\mathrm{Q}_{1}\right)$ in a large inductive load can be reduced by an amount $\left(\mathrm{Q}_{\mathrm{C}}\right)$ by adding a capacitor in parallel to the inductive load.

$$
\begin{aligned}
\mathrm{Q}_{1} & =\mathrm{P} \tan \theta_{1} \\
\mathrm{Q}_{2} & =\mathrm{P} \tan \theta_{2} \\
\mathrm{Q}_{\mathrm{C}} & =\mathrm{Q}_{1}-\mathrm{Q}_{2} \\
& =\mathrm{P}\left(\tan \theta_{1}-\tan \theta_{2}\right)
\end{aligned}
$$

Power Factor Correction by Power Triangle

- But Q_{C} is also the amount of reactive power the capacitor must provide:

$$
\mathrm{Q}_{\mathrm{C}}=\frac{\mathrm{V}_{\mathrm{ms}}^{2}}{\mathrm{X}_{\mathrm{C}}}=\omega \mathrm{CV}_{\mathrm{ms}}^{2}
$$

- The value of required parallel capacitance is then:

$$
\mathrm{C}=\frac{\mathrm{Q}_{\mathrm{C}}}{\omega \mathrm{~V}_{\mathrm{ms}}^{2}}=\frac{\mathrm{P}\left(\tan \theta_{1}-\tan \theta_{2}\right)}{\omega \mathrm{V}_{\mathrm{rms}}^{2}}
$$

Example - PF Correction

Find the value of parallel capacitance needed to correct a load of 140 kVAR at 0.85 lagging pf to unity pf. Assume that the load is supplied by a $110 \mathrm{~V}_{\text {RMS }}, 60 \mathrm{~Hz}$ line.

$$
\mathrm{C}=\frac{\mathrm{Q}_{\mathrm{C}}}{\omega \mathrm{~V}_{\mathrm{ms}}^{2}}=\frac{\mathrm{P}\left(\tan \theta_{1}-\tan \theta_{2}\right)}{\omega \mathrm{V}_{\mathrm{ms}}^{2}}
$$

$$
C=30,691 \mu F
$$

Textbook Problem 10.31-Nilsson 11 ${ }^{\text {th }}$

A group of small appliances on a 60 Hz system requires 20 kVA at 0.85 pf lagging when operated at $125 \mathrm{~V}_{\mathrm{rms}}$. The impedance of the feeder supplying the appliances is $0.01+$ j0.08 Ω. Find:
a) The rms value of the voltage at the source end of the feeder.
b) The average power loss in the feeder.
c) What size capacitor at the load end of the feeder is needed to improve the load power factor to unity?
$V_{S}=133.48 V_{R M S}$
$P_{\text {REAC }}=256 \mathrm{~W}$
$C=1188.7 \mu F$

Power Generation

Hydro-Power Generation

Solar Power
Nuclear Power Generation
Fossil Fuel Generation
Wave Power Generation
Gravity Light Project

Sections 8.4-5 Summary

From the study of this section, you should be able to:

- Determine the complex power, average power, and reactive power for any complex load with known input voltage or current.
- Determine the power factor for a complex load and evaluate the improvement realized by compensating the load through the addition of a shunt capacitor.

